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Overview

Neural Networks trained online on a correlated stream of
data suffer from catastrophic forgetting.

We propose learning a representation that is robust to
forgetting.

To learn the representation, we propose OML, a
second-order meta-learning objective that directly
minimizes interference.

Highly sparse representations naturally emerge by
minimizing our proposed objective.

Motivation

Question: Can we learn representations that are robust to
catastrophic forgetting?
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Hypothesis: Some knowledge representations (right) are
more conducive for continual learning than others (left).

Proposed architecture

Meta-parameters
(Only updated in the outer loop
during meta-training)

Adaptation Parameters
(Updated only in the
inner loop)

Learned
representation
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Representation Learning Network (RLN) Prediction Learning Network (PLN)

Meta-parameters: A deep neural network that transforms
high-dimensional input data to a representation R* more
conducive for continual learning.

Adaptation parameters A simple neural network that
learns continually from R¢.

Meta-Learning Representations for

Continual Learning

Meta-training
Task
Incrementally learn a classifier for English Alphabet
Dataset of size k

X = AABAAA BBBBE €Cce¢ pobBDD ..... ZZZ%Z
Y = 00000 11111 2222 33333 25 25 25 25

Step 1: Adaptation (Inner loop updates)

Use L(Y1,Y7)
to update Wy to Wy

Use L(Y,Y])
to update Wi_1 to Wy
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Online updates on the complete task dataset
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Computing meta-loss on the complete task dataset
Step 3: Meta-update
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Differentiating meta-loss through the
adaptation phase — similar to MAML.

Meta-testing

Task
Incrementally learn a classifier for numerical digits

Step 1: Adaptation (Inner loop updates)

Use L(Y1,Y)
to update Wy to Wi

Use L(Y,,Y])
to update W,,_1 to W,
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Online updates on the complete task dataset

Step 2: Evaluation
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Compute accuracy on the complete task dataset

Results

We compare OML with a Pretraining, a method that
pre-training on the meta-training dataset, MAML-Re
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earns a representation by
0, a MAML like fast adaptation

objective that also learns an RLN and SR-NN, a recent method that learns sparse
representations.
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What sort of representations does OML learn?
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Figure: OML learns highly sparse representations without directly optimizing for sparsity. Moreover,
unlike SR-NN, OML utilizes the complete representation space to represent different inputs.

Can we meta-learn a model initialization instead?
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Answer: No!

OML.: Learning an Initialization

Not effective when meta-testing
iInvolves hundreds of updates.

No of classes learned incrementally

Future Work

Continually meta-update the RLN as opposed to fixing it a:
Preliminary results show that it’s possible to use OML to u

ter meta-learning.

ndate representations
online using an experience replay buffer. This can extend OML to more exciting
settings, such as reinforcement learning.



