
Multi-timescale Nexting
in a Reinforcement Learning Robot

Joseph Modayil, Adam White, and Richard S. Sutton

Reinforcement Learning and Artificial Intelligence Laboratory
University of Alberta, Edmonton, Alberta, Canada

Abstract. The term “nexting” has been used by psychologists to refer
to the propensity of people and many other animals to continually pre-
dict what will happen next in an immediate, local, and personal sense.
The ability to “next” constitutes a basic kind of awareness and knowl-
edge of one’s environment. In this paper we present results with a robot
that learns to next in real time, predicting thousands of features of the
world’s state, including all sensory inputs, at timescales from 0.1 to 8 sec-
onds. This was achieved by treating each state feature as a reward-like
target and applying temporal-difference methods to learn a correspond-
ing value function with a discount rate corresponding to the timescale.
We show that two thousand predictions, each dependent on six thousand
state features, can be learned and updated online at better than 10Hz
on a laptop computer, using the standard TD(λ) algorithm with linear
function approximation. We show that this approach is efficient enough
to be practical, with most of the learning complete within 30 minutes. We
also show that a single tile-coded feature representation suffices to accu-
rately predict many different signals at a significant range of timescales.
Finally, we show that the accuracy of our learned predictions compares
favorably with the optimal off-line solution.

1 Multi-timescale Nexting

Psychologists have noted that people and other animals seem to continually
make large numbers of short-term predictions about their sensory input (e.g.,
see Gilbert 2006, Brogden 1939, Pezzulo 2008, Carlsson et al. 2000). When we
hear a melody we predict what the next note will be or when the next downbeat
will occur, and are surprised and interested (or annoyed) when our predictions
are disconfirmed (Huron 2006, Levitin 2006). When we see a bird in flight, hear
our own footsteps, or handle an object, we continually make and confirm multiple
predictions about our sensory input. When we ride a bike, ski, or rollerblade, we
have finely tuned moment-by-moment predictions of whether we will fall, and of
how our trajectory will change in a turn. In all these examples, we continually
predict what will happen to us next. Making predictions of this simple, personal,
short-term kind has been called nexting (Gilbert, 2006).

Nexting predictions are specific to one individual and to their personal, im-
mediate sensory signals or state variables. A special name for these predictions

seems appropriate because they are unlike predictions of the stock market, of
political events, or of fashion trends. Predictions of such public events seem to
involve more cognition and deliberation, and are fewer in number. In nexting
we envision that one individual may be continually making massive numbers of
small predictions in parallel. Moreover, nexting predictions seem to be made si-
multaneously at multiple time scales. When we read, for example, it seems likely
that we next at the letter, word, and sentence levels, each involving substantially
different time scales.

The ability to predict and anticipate has often been proposed as a key part of
intelligence (e.g., see Tolman 1951, Hawkins & Blakeslee 2004, Butz et al. 2003,
Wolpert et al. 1995, Clark in press). Nexting can be seen as the most basic kind
of prediction, preceding and possibly underlying all the others. That people and
a wide variety of animals learn and make simple predictions at a range of short
time scales in conditioning experiments was established so long ago that it is
known as classical conditioning (Pavlov 1927). Predictions of upcoming shock
to a paw may reveal themselves in limb-retraction attempts a fraction of a second
before the shock, and as increases in heart rate 30 seconds prior. In other ex-
periments, for example those known as sensory preconditioning (Brogden 1939,
Rescorla 1980), it has been clearly shown that animals learn predictive relation-
ships between stimuli even when none of them are inherently good or bad (like
food and shock) or connected to an innate response. In this case the predictions
are made, but not expressed in behaviour until some later experimental manip-
ulation connects them to a response. Animals seem to just be wired to learn the
many predictive relationships in their world.

To be able to next is to have a basic kind of knowledge about how the world
works in interaction with one’s body. It is to have a limited form of forward model
of the world’s dynamics. To be able to learn to next—to notice any disconfirmed
predictions and continually adjust your nexting—is to be aware of one’s world
in a significant way. Thus, to build a robot that can do both of these things is a
natural goal for artificial intelligence. Prior attempts to achieve artificial nexting
can be grouped in two approaches.

The first approach is to build a myopic forward model of the world’s dy-
namics, either in terms of differential equations or state-transition probabilities
(e.g., Wolpert et al. 1995, Grush 2004, Sutton 1990). In this approach a small
number of carefully chosen predictions are made of selected state variables with
a public meaning. The model is myopic in that the predictions are only short
term, either infinitesimally short in the case of differential equations, or maxi-
mally short in the case of the one-step predictions of Markov models. In these
ways, this approach has ended up in practice being very different from nexting.

The second approach, which we follow here, is to use temporal-difference
(TD) methods to learn long-term predictions directly. The prior work pursuing
this approach has almost all been in simulation, and has used table-lookup repre-
sentations and a small number of predictions (e.g., Sutton 1995, Kaelbling 1993,
Singh 1992, Sutton, Precup & Singh 1999, Dayan and Hinton 1993). Sutton et
al. (2011) showed real-time learning of TD predictions on a robot, but did not

demonstrate the ability to learn many predictions in real time or with a single
feature representation.

2 Nexting as Multiple Value Functions

We take a reinforcement-learning approach to achieving nexting. In reinforce-
ment learning it is commonplace to learn long-term predictions of reward, called
value functions, and to learn these using temporal-difference (TD) methods such
as TD(λ) (Sutton 1988). However, TD(λ) has also been used as a model of clas-
sical conditioning, where the predictions are shorter term and where more than
one signal might be viewed as a reward (Sutton & Barto, 1990). Our approach to
nexting can be seen as taking this latter approach to the extreme of predicting
massive numbers of target signals of all kinds at multiple time scales.

We use a notation for our multiple predictions that mirrors—or rather
multiplies—that used for conventional value functions. Time is taken to be dis-
crete, t = 1, 2, 3, . . ., with each time step corresponding to approximately 0.1
seconds of real time. Our ith prediction at time t, denoted vit, is meant to antic-
ipate the future values of the ith prediction’s target signal, rit, over a designated
time scale given by the discount-rate parameter γi. In our experiments, the
target signal rit was either a raw sensory signal or else a component of a state-
feature vector (that we will introduce shortly), and the discount-rate parameter
was one of four fixed values. The goal of learning is for each prediction to ap-
proximately equal the correspondingly discounted sum of the future values of
the corresponding target signal:

vit ≈
∞∑
k=0

(γi)krit+k+1
def
= Git. (1)

The random quantity Git is known as the return.
We use linear function approximation to form each prediction. That is, we

assume that the state of the world at time t is characterized by the feature vector
φt ∈ Rn, and that all the predictions vit are formed as inner products of φt with
the corresponding weight vectors θit:

vit = φ>t θ
i
t

def
=

∑
j

φt(j)θ
i
t(j), (2)

where φ>t denotes the transpose of φt (all vectors are column vectors unless
transposed) and φt(j) denotes its jth component. The predictions at each time
are thus determined by the weight vectors θit. One natural algorithm for learning
the weight vectors is linear TD(λ):

θit+1 = θit + α
(
rit+1 + γiφ>t+1θ

i
t − φ>t θit

)
eit (3)

where α > 0 is a step-size parameter and eit ∈ Rn is an eligibility trace vector,
initially set to zero and then updated on each step by

eit = γiλeit−1 + φt, (4)

where λ ∈ [0, 1] is a trace-decay parameter.
Under common assumptions and a decreasing step-size parameter, TD(λ)

with λ = 1 converges asymptotically to the weight vector that minimizes the
mean squared error between the prediction and its return. In practice, smaller
values of λ ∈ [0, 1) are almost always used because they can result in significantly
faster learning (e.g., see Sutton & Barto 1998), but the λ = 1 case still provides
an important theoretical touchstone. In this case we can define an optimal weight
value θi∗ that minimizes the squared error from the return over the first N
predictions:

θi∗ = arg min
θ

N∑
t=1

(
φ>t θ −Git

)2
. (5)

This value can be computed offline by standard algorithms for solving large least-
squares regression problems, and the performance of this offline-optimal value
can be compared with that of the weight vectors found online by TD(λ). The
offline algorithm is O(n3) in computation and O(n2) in memory, and thus is just
barely tractable for the cases we consider here, in which n = 6065. Nevertheless,
θi∗ provides an important performance standard in that it provides an upper
limit on one measure of the quality of the predictions found by learning. This
upper limit is determined not by any learning algorithm, but by the feature
representation. As we will see, even the predictions due to θi∗ will have residual
error. Thus, this analysis provides a method for determining when performance
can be improved with more experience and when performance improvements
require a better representation. Note that this technique is applicable even when
experience is gathered from the physical world, where no formal notion of state
is available.

3 Experimental Setup

We investigated the practicality of nexting on the Critterbot, a custom-designed
robust and sensor-rich mobile robot platform (Figure 1, left). The robot has a
diverse set of sensors and has holonomic motion provided by three omni-wheels.
Sensors attached to the motors report the electrical current, the input motor
voltage, motor temperature, wheel rotational velocities, and an overheating flag,
providing substantial observability of the internal physical state of the robot.
Other sensors collect information from the external environment. Passive sen-
sors detect ambient light in several directions from the top of the robot in the
visible and infrared spectrum. Active sensors emit infrared light and measure
the reflectance, providing information about the distance to nearby obstacles.
Other sensors report acceleration, rotation, and the magnetic field. In total, we
consider 53 different sensor readings, all normalized to values between 0 and 1
based on sensor limits.

For our experiments, the agent’s state representation was a binary vector,
φt ∈ {0, 1}n, with a constant number of 1 features, constructed by tile coding
(see Sutton & Barto 1998). The features provided no history and performed no

Fig. 1. Left: The Critterbot, a custom mobile robot with multiple sensors. Right: The
Critterbot gathering experience while wall-following in its pen. This experience contains
observations of both stochastic events (such as ambient light variations from the sun)
and regular events (such as passing a lamp on the lower-left side of the pen).

averaging of sensor values. The sensory signals were partitioned based on sensor
modalities. Within each sensor modality, each individual sensor (e.g., Light0) has
multiple overlapping tilings at random offsets (up to 8 tilings), where each tiling
splits the sensor range into disjoint intervals of fixed width (up to 8 intervals).
Additionally, pairs of sensors within a sensor modality were tiled together using
multiple two-dimensional overlapping grids. Pairs of sensors were jointly tiled if
they were spatially adjacent on the robot (e.g., IRLight0 with IRLight1) or if
there was a single sensor in between them (e.g., IRDistance1 with IRDistance3,
IRDistance2 with IRDistance4, etc.). All in all, this tiling scheme produced a
feature vector with n = 6065 components, most of which were 0s, but exactly
457 of which were 1s, including one bias feature that was always 1.

The robot experiment was conducted in a square wooden pen, approximately
two meters on a side, with a lamp on one edge (see Figure 1). The robot’s actions
were selected according to a fixed stochastic wall-following policy. This policy
moved forward by default, slid left or right to keep a side IRDistance sensor
within a bounded range (50-200), and drove backward while turning when the
front IRDistance sensor reported a nearby obstacle. The robot completed a loop
of the pen approximately once every 40 seconds. Due to overheating protection,
the motors would stop to cool down at approximately 14 minute intervals. To
increase the diversity of the data, the policy selected an action at random with
a probability p = 0.05. At every time step (approximately 100ms), sensory data
was gathered and an action performed. This simple policy was sufficient for the
robot to reliably follow the wall for hours, even with overheating interruptions.

The wall-following policy, tile-coding, and the TD(λ) learning algorithm were
all implemented in Java and run on a laptop connected to the robot by a dedi-
cated wireless link. The laptop used an Intel Core 2 Duo processor with a 2.4GHz
clock cycle, 3MB of shared L3 cache, and 4GB DDR3 RAM. The system garbage
collector was called on every time step to reduce variability. Four threads were

used for the learning code. For offline analysis, data was also logged to disk for
120000 time steps (3 hours and 20 minutes).

4 Results

We applied TD(λ) to learn 2160 predictions in parallel. The first 212 predictions
had the target signal, rit, set to the sensor reading of one of the 53 sensors and the
discount rate, γi, set to one of four timescales; the remaining 1948 predictions
had the target signal set to one of 487 randomly selected components of the
feature vector and the discount rate set to one of four timescales. The discount
rates were one of the four values in {0, 0.8, 0.95, 0.9875}, corresponding to time
scales of approximately 0.1, 0.5, 2, and 8 seconds respectively. The learning
parameters were λ = 0.9 and α = 0.1/457(= # of active features). The initial
weight vector was set to zero.

Our initial performance question was scalability, in particular, whether so
many predictions could be made and learned in real time. We found that the
total computation time for a cycle under our conditions was 55ms, well within the
100ms duty cycle of the robot. The total memory consumption was 400MB. Note
that with faster computers the number of predictions or the size of the weight
and feature vectors could be increased at least proportionally. This strategy
for nexting should be easily scalable to millions of predictions with foreseeable
increases in parallel computing power over the next decade.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 20 40 60 80 100 120

Li
gh

t S
en

so
r

Seconds

Observation

ϒ=0.9875 Return

ϒ = 0.95 Return

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 20 40 60 80 100 120

Li
gh

t S
en

so
r

Seconds

TD(λ)
Offline optimal

Return

Observation

Fig. 2. Nexting is demonstrated in these graphs with predictions that rise and fall prior
to the increase and decrease of a sensory signal. Comparison of ideal (left) and learned
(right) predictions of one of the light sensors for three trips around the pen after 2.5
hours of experience. On each trip, the sensor value saturates at 1.0. The returns for
the 2 and 8-second predictions, shown on the left, rise in anticipation of the high value,
and then fall in anticipation of the low value. The 8-second predictions in the second
panel of the offline-optimal weights (dotted blue line) and the TD(λ)-learned weights
(solid red line) behave similarly both to each other and to the returns (albeit with
more noise).

For an initial assesment of accuracy, let us take a close look at one of the
predictions, in particular, at the prediction for one of the light sensors. Notice
that there is a bright lamp in the lower left corner of the pen in Figure 1 (right).
On each trip around the pen, the light sensor increases to its maximal level and
then falls back to a low level, as shown by the black line in Figure 2. If the state
features are sufficiently informative, then the robot may be able to anticipate
the rising and falling of this sensor value. The ideal prediction is the return Git,
shown on the left in the colored lines in Figure 2 for two time scales (two seconds
and eight seconds). Of course, to determine these lines, we had to use the future
values of the light sensor; the idea here is to approximate these ideal predictions
(as in Equation 5) using only the sensory information available to the robot in its
feature vector. The second panel of the figure shows the predictions due to the
weight vector adapted online by TD(λ) and due to the optimal weight vector,
θi∗, computed offline (both for the 8-second time scale). The key result is that
the robot has learned to anticipate both the rise and fall of the light. Both the
learned prediction and the optimal offline prediction match the return closely,
though with substantial noisy perturbations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-100 -80 -60 -40 -20 0 20 40

Li
gh

t S
en

so
r

Seconds

Observation

Offline optimal

Return TD(λ)

Fig. 3. An average of 100 cycles like the
three shown in Figure 2 (right panel),
aligned on the onset of sensor saturation.
Error bars are slightly wider than the lines
themselves and overlap substantially, so are
omitted for clarity

Figure 3 is a still closer look at
this same prediction, obtained by av-
eraging over 100 circuits around the
pen, aligning each circuit’s data so
that the time of initial saturation of
the light sensor is the same. We can
now see very clearly how the pre-
dictions and returns anticipate both
the rise and fall of the sensor value,
and that both the TD(λ) prediction
and the optimal prediction, when av-
eraged, closely match the return.

Having demonstrated that accu-
rate prediction is possible, we now
consider the rate of learning in Fig-
ure 4. The graphs shows that learning
is fast in terms of data (despite the
large number of features), converging
to solutions with low error in the familiar exponential way. This result is impor-
tant as is demonstrates that learning online in real time is possible on robots
with a few hours of experience, even with a large distributed representation. For
contrast, we also show the learning curve for a trivial representation consisting
only of a bias unit (the single feature that is always 1). The comparison serves
to highlight that large informative feature sets are beneficial. The comparison
to the predictive performance of the offline-optimal solution shows a vanishing
performance gap by the end of the experiment. The second panel of the figure
shows a similar pattern of decreasing errors for a sample of the 2160 TD(λ)
predictions, showing that learning many predictions in parallel yields similar

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 30 60 90 120 150 180

N
or

m
al

iz
ed

 R
M

SE

Minutes

Bias
TD(λ)

Offline optimal TD(1)

TD(0)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 30 60 90 120 150 180

N
or

m
al

iz
ed

 R
M

SE

Minutes

Tile 73 (IRDistance) Gamma=0.9875
Tile 2590 (IRLight) Gamma=0.9875

Tile 5356 (MotorSpeed) Gamma=0.9875
MotorSpeed0 Gamma = 0.0
MotorSpeed0 Gamma = 0.8

MotorSpeed0 Gamma = 0.95
MotorSpeed0 Gamma = 0.9875

Light3 Gamma = 0.0
Light3 Gamma = 0.8

Light3 Gamma = 0.95
Light3 Gamma = 0.9857

MagX Gamma = 0.0
MagX Gamma = 0.8

MagX Gamma = 0.95
MagX Gamma = 0.9857

IRDistance0 Gamma = 0.0
IRDistance0 Gamma = 0.8

IRDistance0 Gamma = 0.95
IRDistance0 Gamma = 0.9875

MotorTemperature0 Gamma = 0.0
MotorTemperature0 Gamma = 0.8

MotorTemperature0 Gamma = 0.95
MotorTemperature0 Gamma = 0.9875

IRDistance[5] Gamma=0.9875
MotorCurrent[0] Gamma=0.9875

Minutes

N
or

m
al

iz
ed

 R
M

SE

0 30 60 90 120 150 180

1

0.8

0.6

0.4

0.2

0

Fig. 4. Nexting learning curves for the 8-second light sensor predictions (left) and for
a representative sample of the TD(λ) predictions (right). Predictions at different time
scales have had their root mean squared error (RMSE) normalized by 1

1−γi . The graph
on the left is a comparison of different learning algorithms. The jog in the middle of
the first graph occurs when the robot stops by the light to cool off its motors, causing
the online learners to start making poor predictions. In spite of the unusual event, the
TD(λ) solution still approaches the offline-optimal solution. TD(λ) performs similarly
to a supervised learner TD(1), and they both slightly outperform TD(0). The curve
for the bias unit shows the poor performance of a learner with a trivial representation.
The graph on the right shows that seemingly all the TD(λ) predictions are learning
well with a single feature representation and a single set of learning parameters.

results. A noteworthy result is that the same learning parameters and repre-
sentation suffice for learning answers to a wide variety of nexting predictions
without any convergence problems. Although the answers continue to improve
over time, the most dramatic gains were achieved after 30 minutes of real time.

5 Discussion

These results provide evidence that online learning of thousands of nexting pre-
dictions on a robot in parallel is possible, practical, and accurate. Moreover, the
predictive accuracy is reasonable with just a few hours of robot experience, no
tuning of algorithm parameters, and using a single feature representation for all
predictions. The parallel scalability of knowledge-acquisition in this approach
is substantially novel when compared with the predominately sequential exist-
ing approaches common for robot learning. These results also show that online
methods can be competitive in accuracy with an offline optimization of mean
squared error.

The ease with which a simple reinforcement learning algorithm enables nex-
ting on a robot is somewhat surprising. Although the formal theories of re-
inforcement learning sometimes give mathematical guarantees of convergence,
there is little guidance for the choice of features for a task, for selecting learn-
ing parameters across a range of tasks, or for how much experience is required
before a reinforcement learning system will approach convergence. The experi-

ments show that we can use the same features across a range of tasks, anticipate
events before they occur, and achieve predictive accuracy approaching that of
an offline-optimal solution with a limited amount of robot experience.

6 More General Nexting

The exponentially discounted predictions that we have focused on in this paper
constitute the simplest kind of nexting. They are a natural first kind of predictive
knowledge to be learned. Online TD-style algorithms can be extended to handle
a much broader set of predictions, including time-varying choices of γ, time-
varying λ, and even off-policy prediction (Maei & Sutton 2010). It has even
been proposed that all world knowledge can be represented by a sufficiently
large and diverse set of predictions (Sutton 2009).

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

0 10 20 30 40

To
ta

l M
ot

or
 P

ow
er

Seconds

Prediction

Return

Light saturation

Fig. 5. Nexting can be extended, for exam-
ple to consider time-varying gamma to pre-
dict of the amount of power that the robot
will expend before a probabilistic pseudo-
termination with a 2-second time horizon
or a saturation event on the light sensor.

As one example of such an exten-
sion, consider allowing the discount
rate γi to vary as a function of the
agent’s state. The algorithmic modifi-
cations required are straightforward.
In the definition of the return in
Equation 1, (γi)k is replaced with
Πk
j=0γ

i
t+j . In Equation 3, γi is re-

placed with γit+1 and finally, in Equa-
tion 4, γi is replaced with γit . Using
the modified definitions, the robot can
predict how much motor power it will
consume until either the light sensor
is saturated or approximately two sec-
onds elapse. This prediction can be
formalized by setting the prediction’s
target signal to be the sum of instan-
taneous power consumption of each
wheel, (r =

∑3
i=1 MotorVoltagei ×

MotorCurrenti) and throttling gamma when the light sensor is saturated (γit =
0.1 when the light sensor is saturated and 0.95 otherwise). The plots in Figure 5
shows that the robot has learned to anticipate how much power will be expended
prior to reach the light or spontaneously terminating.

7 Conclusions

We have demonstrated multi-timescale nexting on a physical robot; thousands
of anticipatory predictions at various time-scales can be learned in parallel on
a physical robot in real-time using a reinforcement learning methodology. This
approach uses a large feature representation with an online learning algorithm
to provide an efficient means for making parallel predictions. The algorithms are

capable of making real-time predictions about the future of the robot’s sensors
at multiple time-scales using the computational horsepower of a laptop. Finally,
and key to the practical application of our approach, we have shown that a single
feature representation and a single set of learning parameters are sufficient for
learning many diverse predictions. A natural direction for future work would be
to extend these results to more general predictions and to control.

Acknowledgements

The authors thank Mike Sokolski for creating the Critterbot and Patrick Pi-
larski and Thomas Degris for preparation of Figure 1 and for essential assistance
with the experiment briefly reported in Section 6. This work was supported by
grants from Alberta Innovates – Technology Futures, the National Science and
Engineering Reseach Council of Canada, and the Alberta Innovates Centre for
Machine Learning.

References

Brogden, W. (1939). Sensory pre-conditioning. Journal of Experimental Psy-
chology 25(4):323–332.

Butz, M., Sigaud, O., Gérard, P., Eds. (2003). Anticipatory Behaviour in Adap-
tive Learning Systems: Foundations, Theories, and Systems, LNAI 2684, Springer.

Carlsson, K., Petrovic, P., Skare, S., Petersson, K., Ingvar, M. (2000). Tickling
expectations: neural processing in anticipation of a sensory stimulus. Journal
of Cognitive Neuroscience 12(4):691–703.

Clark, A. (in press). Whatever Next? Predictive Brains, Situated Agents, and
the Future of Cognitive Science. Behavioral and Brain Sciences.

Dayan, P., Hinton, G. (1993). Feudal reinforcement learning. Advances in Neural
Information Processing Systems 5, pp. 271–278.

Gilbert, D. (2006). Stumbling on Happiness. Knopf Press.

Grush, R. (2004). The emulation theory of representation: motor control, im-
agery, and perception. Behavioural and Brain Sciences 27:377–442.

Hawkins, J., Blakeslee, S. (2004). On Intelligence. Times Books.

Huron, D. (2006). Sweet anticipation: Music and the Psychology of Expectation.
MIT Press.

Kaelbling, L. (1993). Learning to achieve goals. In Proceedings of International
Joint Conference on Artificial Intelligence.

Levitin, D. (2006). This is Your Brain on Music. Dutton Books.

Pavlov, I. (1927). Conditioned Reflexes: An Investigations of the Physiological
Activity of the Cerebral Cortex, translated and edited by G. V. Anrep. Oxford
University Press.

Pezzulo, G. (2008). Coordinating with the future: The anticipatory nature of
representation. Minds and Machines 18(2):179–225.

Rescorla, R. (1980). Simultaneous and successive associations in sensory precon-
ditioning. Journal of Experimental Psychology: Animal Behavior Processes
6(3):207–216.

Singh, S. (1992). Reinforcement learning with a hierarchy of abstract models.
Proceedings of the Conference of the Association for the Advancement of Ar-
tificial Intelligence (AAAI-92), pp. 202–207.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.
Machine Learning 3:9–44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming, Proceedings of the Seventh
International Conference on Machine Learning, pp. 216–224.

Sutton, R. S. (1995). TD models: Modeling the world at a mixture of time scales.
Proceedings of the International Conference on Machine Learning, pp. 531–
539.

Sutton, R. S. (2009). The grand challenge of predictive empirical abstract knowl-
edge. In: Working Notes of the IJCAI-09 Workshop on Grand Challenges for
Reasoning from Experiences.

Sutton, R. S., Barto, A. G. (1990). Time-derivative models of Pavlovian re-
inforcement. In Learning and Computational Neuroscience: Foundations of
Adaptive Networks, pp. 497–537. MIT Press.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: An Introduction.
MIT Press.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., Pre-
cup, D. (2011). Horde: A scalable real-time architecture for learning knowledge
from unsupervised sensorimotor interaction. Proceedings of the 10th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pp. 761–
768.

Sutton, R. S., Precup, D., Singh, S. (1999). Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial
Intelligence 112:181–211.

Tolman, E. C. (1951). Purposive Behavior in Animals and Men. University of
California Press.

Wolpert, D., Ghahramani, Z., Jordan, M. (1995). An internal model for sensori-
motor integration. Science 269(5232):1880–1882.

